

Functional SOFC Interfaces Created by Aerosol-Spray Deposition

July 4th 2018

OUTLINE

1. Introduction

2. Coatings for SOFC Applications

3. Conclusions

Our vision is to create a better world through energy innovations.

We collaborate with leading global customers and partners to transform powerful ideas into solutions that make energy production safer, more efficient, and environmentally responsible.

Development initiatives at intersection of energy and environment

SOFCs	Sensors	Materials	Catalysts	Protective Coatings
Stationary and Military	Transportation and Energy Markets	SOFCs and energy storage	H2 and chemicals production	SOFC and high Temperature
	<image/>	<image/>		

Coating microstructure enables a range of applications

<u>Alumina/aluminide surface</u> Oxidation, Cr Volatility, Coking Resistance

Microstructural control enables excellent coking resistance

Temperature: 550 C, Pressure 5 psi Gas Composition: 33% H₂, 30 % CO₂, 25 % CO, 12 % CH₄

BOP CHROMIUM RETENTION

Temperature: 800 °C, Current: 15 A, BoP: 316SS Fuel Flow/Composition: 450 sccm H_2 , 290 sccm air w/ 3 % H_2O

COPPER PROTECTION

Coating is amenable to other substrates

Temperature: 650 °C Gas Composition: Air

Coating microstructure enables a range of applications

<u>Rough surface for mechanical anchoring</u> Surface pre-treatment for functional coatings

Catalytic insert to complement on-cell reforming

AlumiLok[™] protected manifold prevents deactivation

Temperature: 630 °C, Pressure 1 bar

Gas composition: Methane, Steam S/C = 2.5, GHSV: 5000/hour

Interfacial coating protects substrate from glass seal corrosion

Glass/steel interface

Glass/porous anode support interface

Low T barrier layer needed to achieve low R interface

Formation of SrZrO₃ at interface between cathode-zirconia electrolyte

Zirconia based electrolyte

High T processing - interfacial ZDC layer

Zirconia based electrolyte

Identified process to achieve low R cathode-electrolyte interface

CERILOKTM MICROSTRUCTURE

Prevention of resistive phase formation at electrolyte interface

CeriLok[™]

Screen-printed

Low-sintering temperatures are critical for high performance

Gas composition: 0.5 SLPM $H_2|N_2$, 1.50 SLPM air

Low-temperature (*CeriLok*TM) process significantly improves performance

Temperature: 800 °C

Gas Composition: 0.5 SLPM $H_2|N_2$, 1.50 SLPM air

*CeriLok*TM process amenable to ESC and ASC platforms

Electrolyte-supported cells

Anode-supported cells

Similar cell performance improvement seen for ASCs

Temperature: ESC 800 °C, ASC 700 °C Gas composition: 0.5 SLPM $H_2 | N_2$, 1.50 SLPM air

Bio-surfactant Assisted SOFC Electrode Infiltration* Ozcan Ozmen & Edward M. Sabolsky, West Virginia University

- Objective: Impregnate (infiltrate) a liquid solution (or dispersion) into a SOFC anode microstructure in order to deposit nano-catalyst within the anode electrode by a single step infiltration/firing protocol.
- Purpose: To enhance electrochemical reactions, such as the oxidation reaction kinetics, by increasing TPB area and providing higher charge-transfer kinetics.
- Polymerized mussel inspired catechols, such as dopamine and nor-epinephrine can be used as a **bio-adhesive** surfactant for metal/metal oxide substrates and locally chelates metal salt precursors with higher homogeneity and efficiency (single step infiltration)

ozozmen@mix.wu.edu / ed.saboslkv@mail.wu.edu

- 1. Demonstrated applicability of ASD to address cell and stack-level challenges
- 2. Value-proposition of *AlumiLok*TM coating has evolved
- 3. CeriLokTM provides material and processing enhances to provide cell performance improvements for both ESC and ASCs

If you would like more information please stop by our Booth (BO3)

ACKNOWLEDGEMENTS

US Department of Energy

- o Grant DE-SC0008203
- o Grant DE-SC0017226
- o Grant DE-SC0018534

University of West Virginia

o Dr. Ed Sabolsky and Ozcan Ozmen

- Dr. Seth Lawson Dr. Joe Stoffa
- Dr. Jai-Woh Kim

